80 research outputs found

    Automatic human action recognition in videos by graph embedding

    Full text link
    The problem of human action recognition has received increasing attention in recent years for its importance in many applications. Yet, the main limitation of current approaches is that they do not capture well the spatial relationships in the subject performing the action. This paper presents an initial study which uses graphs to represent the actor's shape and graph embedding to then convert the graph into a suitable feature vector. In this way, we can benefit from the wide range of statistical classifiers while retaining the strong representational power of graphs. The paper shows that, although the proposed method does not yet achieve accuracy comparable to that of the best existing approaches, the embedded graphs are capable of describing the deformable human shape and its evolution along the time. This confirms the interesting rationale of the approach and its potential for future performance. © 2011 Springer-Verlag

    Selecting promising classes from generated data for an efficient multi-class nearest neighbor classification

    Get PDF
    The nearest neighbor rule is one of the most considered algorithms for supervised learning because of its simplicity and fair performance in most cases. However, this technique has a number of disadvantages, being the low computational efficiency the most prominent one. This paper presents a strategy to overcome this obstacle in multi-class classification tasks. This strategy proposes the use of Prototype Reduction algorithms that are capable of generating a new training set from the original one to try to gather the same information with fewer samples. Over this reduced set, it is estimated which classes are the closest ones to the input sample. These classes are referred to as promising classes. Eventually, classification is performed using the original training set using the nearest neighbor rule but restricted to the promising classes. Our experiments with several datasets and significance tests show that a similar classification accuracy can be obtained compared to using the original training set, with a significantly higher efficiency.This work has been supported by the Vicerrectorado de Investigación, Desarrollo e Innovación de la Universidad de Alicante through the FPU programme (UAFPU2014–5883), the Spanish Ministerio de Educación, Cultura y Deporte through a FPU Fellowship (Ref. AP2012–0939) and the Spanish Ministerio de Economía y Competitividad through Project TIMuL (No. TIN2013-48152-C2-1-R, supported by UE FEDER funds)

    Prototype generation on structural data using dissimilarity space representation

    Get PDF
    Data reduction techniques play a key role in instance-based classification to lower the amount of data to be processed. Among the different existing approaches, prototype selection (PS) and prototype generation (PG) are the most representative ones. These two families differ in the way the reduced set is obtained from the initial one: While the former aims at selecting the most representative elements from the set, the latter creates new data out of it. Although PG is considered to delimit more efficiently decision boundaries, the operations required are not so well defined in scenarios involving structural data such as strings, trees, or graphs. This work studies the possibility of using dissimilarity space (DS) methods as an intermediate process for mapping the initial structural representation to a statistical one, thereby allowing the use of PG methods. A comparative experiment over string data is carried out in which our proposal is faced to PS methods on the original space. Results show that the proposed strategy is able to achieve significantly similar results to PS in the initial space, thus standing as a clear alternative to the classic approach, with some additional advantages derived from the DS representation.This work was partially supported by the Spanish Ministerio de Educación, Cultura y Deporte through a FPU fellowship (AP2012–0939), Vicerrectorado de Investigación, Desarrollo e Innovación de la Universidad de Alicante through FPU program (UAFPU2014–5883), and the Spanish Ministerio de Economía y Competitividad through Project TIMuL (No. TIN2013-48152-C2-1-R supported by EU FEDER funds)

    Towards Comprehensive Foundations of Computational Intelligence

    Full text link
    Abstract. Although computational intelligence (CI) covers a vast variety of different methods it still lacks an integrative theory. Several proposals for CI foundations are discussed: computing and cognition as compression, meta-learning as search in the space of data models, (dis)similarity based methods providing a framework for such meta-learning, and a more general approach based on chains of transformations. Many useful transformations that extract information from features are discussed. Heterogeneous adaptive systems are presented as particular example of transformation-based systems, and the goal of learning is redefined to facilitate creation of simpler data models. The need to understand data structures leads to techniques for logical and prototype-based rule extraction, and to generation of multiple alternative models, while the need to increase predictive power of adaptive models leads to committees of competent models. Learning from partial observations is a natural extension towards reasoning based on perceptions, and an approach to intuitive solving of such problems is presented. Throughout the paper neurocognitive inspirations are frequently used and are especially important in modeling of the higher cognitive functions. Promising directions such as liquid and laminar computing are identified and many open problems presented.

    Automatic pattern recognition by similarity representations

    No full text

    Group-induced vector spaces

    No full text
    Group-induced vector space
    • …
    corecore